$\sin^2\theta + \cos^2\theta \equiv 1$

This is a helpful equation used to relate the functions sine (otherwise known as sin) and cosine (otherwise known as cos). $\sin^2 \theta$ is the same thing as $(\sin \theta)^2$, it is merely an easier way of writing it, the same is true for $\cos^2 \theta$. The \equiv symbol means "identical to" (i.e. sine squared theta plus cosine squared theta is identical to 1). This symbols means the relationship is always true, regardless of the value of θ . θ is a placeholder for an angle, and for this identity to work the angle must be the same for both sine and cosine.

We know, from SOH CAH TOA, that for a triangle $\sin \theta = \frac{opposite}{hypotenuse}$ and $\cos \theta = \frac{adjacent}{hypotenus}$.

Therefore, using the example to the right, $\sin 36.9^\circ = \frac{3}{5}$ and $\cos 36.9^\circ = \frac{4}{5}$

N.B. 36.9° is a rounded value, the real value is 36.869897...°

$$\left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2 = \frac{9}{25} + \frac{16}{25} = \frac{25}{25} = 1$$

Proof

We also know that, from Pythagoras' Theorem, that $hypotenuse^2 = opposite^2 + adjacent^2$

If we square $\sin \theta$ and $\cos \theta$ we get

$$\sin^2 \theta = \frac{opposite^2}{hypotenuse^2}$$
 and $\cos^2 \theta = \frac{adjacent^2}{hypotenuse^2}$

Using SOH CAH TOA

$$\sin^2 \theta + \cos^2 \theta = \frac{opposit^2}{hypotenus^2} + \frac{adjacen^2}{hypotenus^2}$$

Adding these fractions together

 $\sin^2\theta + \cos^2\theta \equiv 1$

Using Pythagoras' Theorem

Any value (except 0) divided by itself is 1.

Therefore, we know that

The hypotenuse cannot be of length 0 of course, otherwise it (and the triangle) would not exist.

<u>See also</u>

- Sine, Cosine and Tangent (SOH CAH TOA)
- Pythagoras' Theorem

References

Attwood, G. et al. (2017). *Edexcel AS and A level Mathematics - Pure - Year 1*. London: Pearson Education. p.209